Federal Aviation Administration, DOT be used in flight following system failures (including all configurations covered by Airplane Flight Manual procedures). - (h) For flight in icing conditions before the ice protection system has been activated and is performing its intended function, the following requirements apply, with the ice accretion defined in appendix C, part II(e): - (1) If activating the ice protection system depends on the pilot seeing a specified ice accretion on a reference surface (not just the first indication of icing), the requirements of this section apply, except for paragraphs (c) and (d) of this section. - (2) For other means of activating the ice protection system, the stall warning margin in straight and turning flight must be sufficient to allow the pilot to prevent stalling without encountering any adverse flight characteristics when the speed is reduced at rates not exceeding one knot per second and the pilot performs the recovery maneuver in the same way as for flight in non-icing conditions. - (i) If stall warning is provided by the same means as for flight in non-icing conditions, the pilot may not start the recovery maneuver earlier than one second after the onset of stall warning. - (ii) If stall warning is provided by a different means than for flight in nonicing conditions, the pilot may not start the recovery maneuver earlier than 3 seconds after the onset of stall warning. Also, compliance must be shown with §25.203 using the demonstration prescribed by §25.201, except that the deceleration rates of §25.201(c)(2) need not be demonstrated. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–7, 30 FR 13118, Oct. 15, 1965; Amdt. 25–42, 43 FR 2322, Jan. 16, 1978; Amdt. 25–108, 67 FR 70827, Nov. 26, 2002; Amdt. 25–121, 72 FR 44668, Aug. 8, 2007] # GROUND AND WATER HANDLING CHARACTERISTICS ## § 25.231 Longitudinal stability and control. (a) Landplanes may have no uncontrollable tendency to nose over in any reasonably expected operating condition or when rebound occurs during landing or takeoff. In addition— - (1) Wheel brakes must operate smoothly and may not cause any undue tendency to nose over; and - (2) If a tail-wheel landing gear is used, it must be possible, during the takeoff ground run on concrete, to maintain any attitude up to thrust line level, at 75 percent of V_{SR1} . - (b) For seaplanes and amphibians, the most adverse water conditions safe for takeoff, taxiing, and landing, must be established. [Docket No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–108, 67 FR 70828, Nov. 26, 2002] ## § 25.233 Directional stability and control. - (a) There may be no uncontrollable ground-looping tendency in 90° cross winds, up to a wind velocity of 20 knots or $0.2~V_{SR0}$, whichever is greater, except that the wind velocity need not exceed 25 knots at any speed at which the airplane may be expected to be operated on the ground. This may be shown while establishing the 90° cross component of wind velocity required by 8.25.237. - (b) Landplanes must be satisfactorily controllable, without exceptional piloting skill or alertness, in power-off landings at normal landing speed, without using brakes or engine power to maintain a straight path. This may be shown during power-off landings made in conjunction with other tests. - (c) The airplane must have adequate directional control during taxiing. This may be shown during taxiing prior to takeoffs made in conjunction with other tests [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–23, 35 FR 5671, Apr. 8, 1970; Amdt. 25–42, 43 FR 2322, Jan. 16, 1978; Amdt. 25–94, 63 FR 8848, Feb. 23, 1998; Amdt. 25–108, 67 FR 70828, Nov. 26, 2002] ### § 25.235 Taxiing condition. The shock absorbing mechanism may not damage the structure of the airplane when the airplane is taxied on the roughest ground that may reasonably be expected in normal operation. #### § 25.237 Wind velocities. (a) For land planes and amphibians, the following applies: